VTK  9.3.20240419
Public Types | Public Member Functions | Static Public Member Functions | Protected Member Functions | Protected Attributes | List of all members
vtkVolumeMapper Class Referenceabstract

Abstract class for a volume mapper. More...

#include <vtkVolumeMapper.h>

Inheritance diagram for vtkVolumeMapper:
[legend]
Collaboration diagram for vtkVolumeMapper:
[legend]

Public Types

enum  BlendModes {
  COMPOSITE_BLEND , MAXIMUM_INTENSITY_BLEND , MINIMUM_INTENSITY_BLEND , AVERAGE_INTENSITY_BLEND ,
  ADDITIVE_BLEND , ISOSURFACE_BLEND , SLICE_BLEND
}
 Blend modes. More...
 
typedef vtkAbstractVolumeMapper Superclass
 
- Public Types inherited from vtkAbstractVolumeMapper
typedef vtkAbstractMapper3D Superclass
 
- Public Types inherited from vtkAbstractMapper3D
typedef vtkAbstractMapper Superclass
 
- Public Types inherited from vtkAbstractMapper
typedef vtkAlgorithm Superclass
 
- Public Types inherited from vtkAlgorithm
enum  DesiredOutputPrecision { SINGLE_PRECISION , DOUBLE_PRECISION , DEFAULT_PRECISION }
 Values used for setting the desired output precision for various algorithms. More...
 
typedef vtkObject Superclass
 

Public Member Functions

virtual vtkTypeBool IsA (const char *type)
 Return 1 if this class is the same type of (or a subclass of) the named class. More...
 
vtkVolumeMapperNewInstance () const
 
void PrintSelf (ostream &os, vtkIndent indent) override
 Methods invoked by print to print information about the object including superclasses. More...
 
void Render (vtkRenderer *ren, vtkVolume *vol) override=0
 WARNING: INTERNAL METHOD - NOT INTENDED FOR GENERAL USE DO NOT USE THIS METHOD OUTSIDE OF THE RENDERING PROCESS Render the volume. More...
 
void ReleaseGraphicsResources (vtkWindow *) override
 WARNING: INTERNAL METHOD - NOT INTENDED FOR GENERAL USE Release any graphics resources that are being consumed by this mapper. More...
 
virtual void SetInputData (vtkImageData *)
 Set/Get the input data. More...
 
virtual void SetInputData (vtkDataSet *)
 Set/Get the input data. More...
 
virtual void SetInputData (vtkRectilinearGrid *)
 Set/Get the input data. More...
 
virtual vtkDataSetGetInput ()
 Set/Get the input data. More...
 
virtual vtkDataSetGetInput (int port)
 Set/Get the input data. More...
 
virtual void SetBlendMode (int)
 Set/Get the blend mode. More...
 
void SetBlendModeToComposite ()
 Set/Get the blend mode. More...
 
void SetBlendModeToMaximumIntensity ()
 Set/Get the blend mode. More...
 
void SetBlendModeToMinimumIntensity ()
 Set/Get the blend mode. More...
 
void SetBlendModeToAverageIntensity ()
 Set/Get the blend mode. More...
 
void SetBlendModeToAdditive ()
 Set/Get the blend mode. More...
 
void SetBlendModeToIsoSurface ()
 Set/Get the blend mode. More...
 
void SetBlendModeToSlice ()
 Set/Get the blend mode. More...
 
virtual int GetBlendMode ()
 Set/Get the blend mode. More...
 
virtual void SetAverageIPScalarRange (double, double)
 Set/Get the scalar range to be considered for average intensity projection blend mode. More...
 
void SetAverageIPScalarRange (double[2])
 Set/Get the scalar range to be considered for average intensity projection blend mode. More...
 
virtual double * GetAverageIPScalarRange ()
 Set/Get the scalar range to be considered for average intensity projection blend mode. More...
 
virtual void GetAverageIPScalarRange (double data[2])
 Set/Get the scalar range to be considered for average intensity projection blend mode. More...
 
virtual void SetCropping (vtkTypeBool)
 Turn On/Off orthogonal cropping. More...
 
virtual vtkTypeBool GetCropping ()
 Turn On/Off orthogonal cropping. More...
 
virtual void CroppingOn ()
 Turn On/Off orthogonal cropping. More...
 
virtual void CroppingOff ()
 Turn On/Off orthogonal cropping. More...
 
virtual void SetCroppingRegionPlanes (double, double, double, double, double, double)
 Set/Get the Cropping Region Planes ( xmin, xmax, ymin, ymax, zmin, zmax ) These planes are defined in volume coordinates - spacing and origin are considered. More...
 
virtual void SetCroppingRegionPlanes (double[6])
 Set/Get the Cropping Region Planes ( xmin, xmax, ymin, ymax, zmin, zmax ) These planes are defined in volume coordinates - spacing and origin are considered. More...
 
virtual double * GetCroppingRegionPlanes ()
 Set/Get the Cropping Region Planes ( xmin, xmax, ymin, ymax, zmin, zmax ) These planes are defined in volume coordinates - spacing and origin are considered. More...
 
virtual void GetCroppingRegionPlanes (double data[6])
 Set/Get the Cropping Region Planes ( xmin, xmax, ymin, ymax, zmin, zmax ) These planes are defined in volume coordinates - spacing and origin are considered. More...
 
virtual double * GetVoxelCroppingRegionPlanes ()
 Get the cropping region planes in voxels. More...
 
virtual void GetVoxelCroppingRegionPlanes (double data[6])
 Get the cropping region planes in voxels. More...
 
virtual void SetComputeNormalFromOpacity (bool)
 If enabled, the volume(s) whose shading is enabled will use the gradient of opacity instead of the scalar gradient to estimate the surface's normal when applying the shading model. More...
 
virtual bool GetComputeNormalFromOpacity ()
 If enabled, the volume(s) whose shading is enabled will use the gradient of opacity instead of the scalar gradient to estimate the surface's normal when applying the shading model. More...
 
virtual void ComputeNormalFromOpacityOn ()
 If enabled, the volume(s) whose shading is enabled will use the gradient of opacity instead of the scalar gradient to estimate the surface's normal when applying the shading model. More...
 
virtual void ComputeNormalFromOpacityOff ()
 If enabled, the volume(s) whose shading is enabled will use the gradient of opacity instead of the scalar gradient to estimate the surface's normal when applying the shading model. More...
 
virtual void SetCroppingRegionFlags (int)
 Set the flags for the cropping regions. More...
 
virtual int GetCroppingRegionFlags ()
 Set the flags for the cropping regions. More...
 
void SetCroppingRegionFlagsToSubVolume ()
 Set the flags for the cropping regions. More...
 
void SetCroppingRegionFlagsToFence ()
 Set the flags for the cropping regions. More...
 
void SetCroppingRegionFlagsToInvertedFence ()
 Set the flags for the cropping regions. More...
 
void SetCroppingRegionFlagsToCross ()
 Set the flags for the cropping regions. More...
 
void SetCroppingRegionFlagsToInvertedCross ()
 Set the flags for the cropping regions. More...
 
- Public Member Functions inherited from vtkAbstractVolumeMapper
vtkAbstractVolumeMapperNewInstance () const
 
virtual char * GetArrayName ()
 Get the array name or number and component to use for rendering. More...
 
virtual int GetArrayId ()
 
virtual int GetArrayAccessMode ()
 
const char * GetScalarModeAsString ()
 Return the method for obtaining scalar data. More...
 
virtual vtkDataSetGetDataSetInput ()
 Set/Get the input data. More...
 
virtual vtkDataObjectGetDataObjectInput ()
 Set/Get the input data. More...
 
double * GetBounds () override
 Return bounding box (array of six doubles) of data expressed as (xmin,xmax, ymin,ymax, zmin,zmax). More...
 
void GetBounds (double bounds[6]) override
 Return bounding box (array of six doubles) of data expressed as (xmin,xmax, ymin,ymax, zmin,zmax). More...
 
virtual void SetScalarMode (int)
 Control how the mapper works with scalar point data and cell attribute data. More...
 
virtual int GetScalarMode ()
 Control how the mapper works with scalar point data and cell attribute data. More...
 
virtual void SetArrayAccessMode (int)
 Control how the mapper works with scalar point data and cell attribute data. More...
 
void SetScalarModeToDefault ()
 Control how the mapper works with scalar point data and cell attribute data. More...
 
void SetScalarModeToUsePointData ()
 Control how the mapper works with scalar point data and cell attribute data. More...
 
void SetScalarModeToUseCellData ()
 Control how the mapper works with scalar point data and cell attribute data. More...
 
void SetScalarModeToUsePointFieldData ()
 Control how the mapper works with scalar point data and cell attribute data. More...
 
void SetScalarModeToUseCellFieldData ()
 Control how the mapper works with scalar point data and cell attribute data. More...
 
virtual void SelectScalarArray (int arrayNum)
 When ScalarMode is set to UsePointFieldData or UseCellFieldData, you can specify which scalar array to use during rendering. More...
 
virtual void SelectScalarArray (const char *arrayName)
 When ScalarMode is set to UsePointFieldData or UseCellFieldData, you can specify which scalar array to use during rendering. More...
 
virtual float GetGradientMagnitudeScale ()
 WARNING: INTERNAL METHOD - NOT INTENDED FOR GENERAL USE. More...
 
virtual float GetGradientMagnitudeBias ()
 WARNING: INTERNAL METHOD - NOT INTENDED FOR GENERAL USE. More...
 
virtual float GetGradientMagnitudeScale (int)
 WARNING: INTERNAL METHOD - NOT INTENDED FOR GENERAL USE. More...
 
virtual float GetGradientMagnitudeBias (int)
 WARNING: INTERNAL METHOD - NOT INTENDED FOR GENERAL USE. More...
 
- Public Member Functions inherited from vtkAbstractMapper3D
vtkAbstractMapper3DNewInstance () const
 
double GetLength ()
 Return the diagonal length of this mappers bounding box. More...
 
virtual vtkTypeBool IsARayCastMapper ()
 Is this a ray cast mapper? A subclass would return 1 if the ray caster is needed to generate an image from this mapper. More...
 
virtual vtkTypeBool IsARenderIntoImageMapper ()
 Is this a "render into image" mapper? A subclass would return 1 if the mapper produces an image by rendering into a software image buffer. More...
 
void GetClippingPlaneInDataCoords (vtkMatrix4x4 *propMatrix, int i, double planeEquation[4])
 Get the ith clipping plane as a homogeneous plane equation. More...
 
double * GetCenter ()
 Return the Center of this mapper's data. More...
 
void GetCenter (double center[3])
 Return the Center of this mapper's data. More...
 
- Public Member Functions inherited from vtkAbstractMapper
vtkAbstractMapperNewInstance () const
 
vtkMTimeType GetMTime () override
 Override Modifiedtime as we have added Clipping planes. More...
 
void SetClippingPlanes (vtkPlanes *planes)
 An alternative way to set clipping planes: use up to six planes found in the supplied instance of the implicit function vtkPlanes. More...
 
virtual void ShallowCopy (vtkAbstractMapper *m)
 Make a shallow copy of this mapper. More...
 
int GetNumberOfClippingPlanes ()
 Get the number of clipping planes. More...
 
virtual double GetTimeToDraw ()
 Get the time required to draw the geometry last time it was rendered. More...
 
void AddClippingPlane (vtkPlane *plane)
 Specify clipping planes to be applied when the data is mapped (at most 6 clipping planes can be specified). More...
 
void RemoveClippingPlane (vtkPlane *plane)
 Specify clipping planes to be applied when the data is mapped (at most 6 clipping planes can be specified). More...
 
void RemoveAllClippingPlanes ()
 Specify clipping planes to be applied when the data is mapped (at most 6 clipping planes can be specified). More...
 
virtual void SetClippingPlanes (vtkPlaneCollection *)
 Get/Set the vtkPlaneCollection which specifies the clipping planes. More...
 
virtual vtkPlaneCollectionGetClippingPlanes ()
 Get/Set the vtkPlaneCollection which specifies the clipping planes. More...
 
- Public Member Functions inherited from vtkAlgorithm
vtkAlgorithmNewInstance () const
 
vtkTypeBool HasExecutive ()
 Check whether this algorithm has an assigned executive. More...
 
vtkExecutiveGetExecutive ()
 Get this algorithm's executive. More...
 
virtual void SetExecutive (vtkExecutive *executive)
 Set this algorithm's executive. More...
 
virtual vtkTypeBool ProcessRequest (vtkInformation *request, vtkInformationVector **inInfo, vtkInformationVector *outInfo)
 Upstream/Downstream requests form the generalized interface through which executives invoke a algorithm's functionality. More...
 
vtkTypeBool ProcessRequest (vtkInformation *request, vtkCollection *inInfo, vtkInformationVector *outInfo)
 Version of ProcessRequest() that is wrapped. More...
 
virtual int ComputePipelineMTime (vtkInformation *request, vtkInformationVector **inInfoVec, vtkInformationVector *outInfoVec, int requestFromOutputPort, vtkMTimeType *mtime)
 A special version of ProcessRequest meant specifically for the pipeline modified time request. More...
 
virtual int ModifyRequest (vtkInformation *request, int when)
 This method gives the algorithm a chance to modify the contents of a request before or after (specified in the when argument) it is forwarded. More...
 
vtkInformationGetInputPortInformation (int port)
 Get the information object associated with an input port. More...
 
vtkInformationGetOutputPortInformation (int port)
 Get the information object associated with an output port. More...
 
int GetNumberOfInputPorts ()
 Get the number of input ports used by the algorithm. More...
 
int GetNumberOfOutputPorts ()
 Get the number of output ports provided by the algorithm. More...
 
void SetAbortExecuteAndUpdateTime ()
 Set AbortExecute Flag and update LastAbortTime. More...
 
void UpdateProgress (double amount)
 Update the progress of the process object. More...
 
bool CheckAbort ()
 Checks to see if this filter should abort. More...
 
virtual void SetInputArrayToProcess (int idx, int port, int connection, const char *fieldAssociation, const char *attributeTypeorName)
 String based versions of SetInputArrayToProcess(). More...
 
vtkInformationGetInputArrayInformation (int idx)
 Get the info object for the specified input array to this algorithm. More...
 
void RemoveAllInputs ()
 Remove all the input data. More...
 
vtkDataObjectGetOutputDataObject (int port)
 Get the data object that will contain the algorithm output for the given port. More...
 
vtkDataObjectGetInputDataObject (int port, int connection)
 Get the data object that will contain the algorithm input for the given port and given connection. More...
 
virtual void RemoveInputConnection (int port, vtkAlgorithmOutput *input)
 Remove a connection from the given input port index. More...
 
virtual void RemoveInputConnection (int port, int idx)
 Remove a connection given by index idx. More...
 
virtual void RemoveAllInputConnections (int port)
 Removes all input connections. More...
 
virtual void SetInputDataObject (int port, vtkDataObject *data)
 Sets the data-object as an input on the given port index. More...
 
virtual void SetInputDataObject (vtkDataObject *data)
 
virtual void AddInputDataObject (int port, vtkDataObject *data)
 Add the data-object as an input to this given port. More...
 
virtual void AddInputDataObject (vtkDataObject *data)
 
vtkAlgorithmOutputGetOutputPort (int index)
 Get a proxy object corresponding to the given output port of this algorithm. More...
 
vtkAlgorithmOutputGetOutputPort ()
 
int GetNumberOfInputConnections (int port)
 Get the number of inputs currently connected to a port. More...
 
int GetTotalNumberOfInputConnections ()
 Get the total number of inputs for this algorithm. More...
 
vtkAlgorithmOutputGetInputConnection (int port, int index)
 Get the algorithm output port connected to an input port. More...
 
vtkAlgorithmGetInputAlgorithm (int port, int index, int &algPort)
 Returns the algorithm and the output port index of that algorithm connected to a port-index pair. More...
 
vtkAlgorithmGetInputAlgorithm (int port, int index)
 Returns the algorithm connected to a port-index pair. More...
 
vtkAlgorithmGetInputAlgorithm ()
 Equivalent to GetInputAlgorithm(0, 0). More...
 
vtkExecutiveGetInputExecutive (int port, int index)
 Returns the executive associated with a particular input connection. More...
 
vtkExecutiveGetInputExecutive ()
 Equivalent to GetInputExecutive(0, 0) More...
 
vtkInformationGetInputInformation (int port, int index)
 Return the information object that is associated with a particular input connection. More...
 
vtkInformationGetInputInformation ()
 Equivalent to GetInputInformation(0, 0) More...
 
vtkInformationGetOutputInformation (int port)
 Return the information object that is associated with a particular output port. More...
 
virtual vtkTypeBool Update (int port, vtkInformationVector *requests)
 This method enables the passing of data requests to the algorithm to be used during execution (in addition to bringing a particular port up-to-date). More...
 
virtual vtkTypeBool Update (vtkInformation *requests)
 Convenience method to update an algorithm after passing requests to its first output port. More...
 
virtual int UpdatePiece (int piece, int numPieces, int ghostLevels, const int extents[6]=nullptr)
 Convenience method to update an algorithm after passing requests to its first output port. More...
 
virtual int UpdateExtent (const int extents[6])
 Convenience method to update an algorithm after passing requests to its first output port. More...
 
virtual int UpdateTimeStep (double time, int piece=-1, int numPieces=1, int ghostLevels=0, const int extents[6]=nullptr)
 Convenience method to update an algorithm after passing requests to its first output port. More...
 
virtual void UpdateInformation ()
 Bring the algorithm's information up-to-date. More...
 
virtual void UpdateDataObject ()
 Create output object(s). More...
 
virtual void PropagateUpdateExtent ()
 Propagate meta-data upstream. More...
 
virtual void UpdateWholeExtent ()
 Bring this algorithm's outputs up-to-date. More...
 
void ConvertTotalInputToPortConnection (int ind, int &port, int &conn)
 Convenience routine to convert from a linear ordering of input connections to a port/connection pair. More...
 
void RemoveNoPriorTemporalAccessInformationKey ()
 Removes any information key vtkStreamingDemandDrivenPipeline::NO_PRIOR_TEMPORAL_ACCESS() to all output ports of this vtkAlgorithm. More...
 
virtual vtkInformationGetInformation ()
 Set/Get the information object associated with this algorithm. More...
 
virtual void SetInformation (vtkInformation *)
 Set/Get the information object associated with this algorithm. More...
 
bool UsesGarbageCollector () const override
 Participate in garbage collection. More...
 
virtual void SetAbortExecute (vtkTypeBool)
 Set/Get the AbortExecute flag for the process object. More...
 
virtual vtkTypeBool GetAbortExecute ()
 Set/Get the AbortExecute flag for the process object. More...
 
virtual void AbortExecuteOn ()
 Set/Get the AbortExecute flag for the process object. More...
 
virtual void AbortExecuteOff ()
 Set/Get the AbortExecute flag for the process object. More...
 
virtual double GetProgress ()
 Get the execution progress of a process object. More...
 
void SetContainerAlgorithm (vtkAlgorithm *containerAlg)
 Set/get a Container algorithm for this algorithm. More...
 
vtkAlgorithmGetContainerAlgorithm ()
 Set/get a Container algorithm for this algorithm. More...
 
virtual void SetAbortOutput (bool)
 Set/Get an internal variable used to communicate between the algorithm and executive. More...
 
virtual bool GetAbortOutput ()
 Set/Get an internal variable used to communicate between the algorithm and executive. More...
 
void SetProgressShiftScale (double shift, double scale)
 Specify the shift and scale values to use to apply to the progress amount when UpdateProgress is called. More...
 
virtual double GetProgressShift ()
 Specify the shift and scale values to use to apply to the progress amount when UpdateProgress is called. More...
 
virtual double GetProgressScale ()
 Specify the shift and scale values to use to apply to the progress amount when UpdateProgress is called. More...
 
void SetProgressText (const char *ptext)
 Set the current text message associated with the progress state. More...
 
virtual char * GetProgressText ()
 Set the current text message associated with the progress state. More...
 
virtual unsigned long GetErrorCode ()
 The error code contains a possible error that occurred while reading or writing the file. More...
 
virtual void SetInputArrayToProcess (int idx, int port, int connection, int fieldAssociation, const char *name)
 Set the input data arrays that this algorithm will process. More...
 
virtual void SetInputArrayToProcess (int idx, int port, int connection, int fieldAssociation, int fieldAttributeType)
 Set the input data arrays that this algorithm will process. More...
 
virtual void SetInputArrayToProcess (int idx, vtkInformation *info)
 Set the input data arrays that this algorithm will process. More...
 
virtual void SetInputConnection (int port, vtkAlgorithmOutput *input)
 Set the connection for the given input port index. More...
 
virtual void SetInputConnection (vtkAlgorithmOutput *input)
 Set the connection for the given input port index. More...
 
virtual void AddInputConnection (int port, vtkAlgorithmOutput *input)
 Add a connection to the given input port index. More...
 
virtual void AddInputConnection (vtkAlgorithmOutput *input)
 Add a connection to the given input port index. More...
 
virtual void Update (int port)
 Bring this algorithm's outputs up-to-date. More...
 
virtual void Update ()
 Bring this algorithm's outputs up-to-date. More...
 
virtual void SetReleaseDataFlag (vtkTypeBool)
 Turn release data flag on or off for all output ports. More...
 
virtual vtkTypeBool GetReleaseDataFlag ()
 Turn release data flag on or off for all output ports. More...
 
void ReleaseDataFlagOn ()
 Turn release data flag on or off for all output ports. More...
 
void ReleaseDataFlagOff ()
 Turn release data flag on or off for all output ports. More...
 
int UpdateExtentIsEmpty (vtkInformation *pinfo, vtkDataObject *output)
 This detects when the UpdateExtent will generate no data This condition is satisfied when the UpdateExtent has zero volume (0,-1,...) or the UpdateNumberOfPieces is 0. More...
 
int UpdateExtentIsEmpty (vtkInformation *pinfo, int extentType)
 This detects when the UpdateExtent will generate no data This condition is satisfied when the UpdateExtent has zero volume (0,-1,...) or the UpdateNumberOfPieces is 0. More...
 
int * GetUpdateExtent ()
 These functions return the update extent for output ports that use 3D extents. More...
 
int * GetUpdateExtent (int port)
 These functions return the update extent for output ports that use 3D extents. More...
 
void GetUpdateExtent (int &x0, int &x1, int &y0, int &y1, int &z0, int &z1)
 These functions return the update extent for output ports that use 3D extents. More...
 
void GetUpdateExtent (int port, int &x0, int &x1, int &y0, int &y1, int &z0, int &z1)
 These functions return the update extent for output ports that use 3D extents. More...
 
void GetUpdateExtent (int extent[6])
 These functions return the update extent for output ports that use 3D extents. More...
 
void GetUpdateExtent (int port, int extent[6])
 These functions return the update extent for output ports that use 3D extents. More...
 
int GetUpdatePiece ()
 These functions return the update extent for output ports that use piece extents. More...
 
int GetUpdatePiece (int port)
 These functions return the update extent for output ports that use piece extents. More...
 
int GetUpdateNumberOfPieces ()
 These functions return the update extent for output ports that use piece extents. More...
 
int GetUpdateNumberOfPieces (int port)
 These functions return the update extent for output ports that use piece extents. More...
 
int GetUpdateGhostLevel ()
 These functions return the update extent for output ports that use piece extents. More...
 
int GetUpdateGhostLevel (int port)
 These functions return the update extent for output ports that use piece extents. More...
 
void SetProgressObserver (vtkProgressObserver *)
 If an ProgressObserver is set, the algorithm will report progress through it rather than directly. More...
 
virtual vtkProgressObserverGetProgressObserver ()
 If an ProgressObserver is set, the algorithm will report progress through it rather than directly. More...
 
void SetNoPriorTemporalAccessInformationKey (int key)
 Set to all output ports of this algorithm the information key vtkStreamingDemandDrivenPipeline::NO_PRIOR_TEMPORAL_ACCESS(). More...
 
void SetNoPriorTemporalAccessInformationKey ()
 Set to all output ports of this algorithm the information key vtkStreamingDemandDrivenPipeline::NO_PRIOR_TEMPORAL_ACCESS(). More...
 
- Public Member Functions inherited from vtkObject
 vtkBaseTypeMacro (vtkObject, vtkObjectBase)
 
virtual void DebugOn ()
 Turn debugging output on. More...
 
virtual void DebugOff ()
 Turn debugging output off. More...
 
bool GetDebug ()
 Get the value of the debug flag. More...
 
void SetDebug (bool debugFlag)
 Set the value of the debug flag. More...
 
virtual void Modified ()
 Update the modification time for this object. More...
 
void RemoveObserver (unsigned long tag)
 
void RemoveObservers (unsigned long event)
 
void RemoveObservers (const char *event)
 
void RemoveAllObservers ()
 
vtkTypeBool HasObserver (unsigned long event)
 
vtkTypeBool HasObserver (const char *event)
 
vtkTypeBool InvokeEvent (unsigned long event)
 
vtkTypeBool InvokeEvent (const char *event)
 
std::string GetObjectDescription () const override
 The object description printed in messages and PrintSelf output. More...
 
unsigned long AddObserver (unsigned long event, vtkCommand *, float priority=0.0f)
 Allow people to add/remove/invoke observers (callbacks) to any VTK object. More...
 
unsigned long AddObserver (const char *event, vtkCommand *, float priority=0.0f)
 Allow people to add/remove/invoke observers (callbacks) to any VTK object. More...
 
vtkCommandGetCommand (unsigned long tag)
 Allow people to add/remove/invoke observers (callbacks) to any VTK object. More...
 
void RemoveObserver (vtkCommand *)
 Allow people to add/remove/invoke observers (callbacks) to any VTK object. More...
 
void RemoveObservers (unsigned long event, vtkCommand *)
 Allow people to add/remove/invoke observers (callbacks) to any VTK object. More...
 
void RemoveObservers (const char *event, vtkCommand *)
 Allow people to add/remove/invoke observers (callbacks) to any VTK object. More...
 
vtkTypeBool HasObserver (unsigned long event, vtkCommand *)
 Allow people to add/remove/invoke observers (callbacks) to any VTK object. More...
 
vtkTypeBool HasObserver (const char *event, vtkCommand *)
 Allow people to add/remove/invoke observers (callbacks) to any VTK object. More...
 
template<class U , class T >
unsigned long AddObserver (unsigned long event, U observer, void(T::*callback)(), float priority=0.0f)
 Overloads to AddObserver that allow developers to add class member functions as callbacks for events. More...
 
template<class U , class T >
unsigned long AddObserver (unsigned long event, U observer, void(T::*callback)(vtkObject *, unsigned long, void *), float priority=0.0f)
 Overloads to AddObserver that allow developers to add class member functions as callbacks for events. More...
 
template<class U , class T >
unsigned long AddObserver (unsigned long event, U observer, bool(T::*callback)(vtkObject *, unsigned long, void *), float priority=0.0f)
 Allow user to set the AbortFlagOn() with the return value of the callback method. More...
 
vtkTypeBool InvokeEvent (unsigned long event, void *callData)
 This method invokes an event and return whether the event was aborted or not. More...
 
vtkTypeBool InvokeEvent (const char *event, void *callData)
 This method invokes an event and return whether the event was aborted or not. More...
 
virtual void SetObjectName (const std::string &objectName)
 Set/get the name of this object for reporting purposes. More...
 
virtual std::string GetObjectName () const
 Set/get the name of this object for reporting purposes. More...
 
- Public Member Functions inherited from vtkObjectBase
const char * GetClassName () const
 Return the class name as a string. More...
 
virtual vtkIdType GetNumberOfGenerationsFromBase (const char *name)
 Given the name of a base class of this class type, return the distance of inheritance between this class type and the named class (how many generations of inheritance are there between this class and the named class). More...
 
virtual void Delete ()
 Delete a VTK object. More...
 
virtual void FastDelete ()
 Delete a reference to this object. More...
 
void InitializeObjectBase ()
 
void Print (ostream &os)
 Print an object to an ostream. More...
 
void Register (vtkObjectBase *o)
 Increase the reference count (mark as used by another object). More...
 
virtual void UnRegister (vtkObjectBase *o)
 Decrease the reference count (release by another object). More...
 
int GetReferenceCount ()
 Return the current reference count of this object. More...
 
void SetReferenceCount (int)
 Sets the reference count. More...
 
bool GetIsInMemkind () const
 A local state flag that remembers whether this object lives in the normal or extended memory space. More...
 
virtual void PrintHeader (ostream &os, vtkIndent indent)
 Methods invoked by print to print information about the object including superclasses. More...
 
virtual void PrintTrailer (ostream &os, vtkIndent indent)
 Methods invoked by print to print information about the object including superclasses. More...
 

Static Public Member Functions

static vtkTypeBool IsTypeOf (const char *type)
 
static vtkVolumeMapperSafeDownCast (vtkObjectBase *o)
 
- Static Public Member Functions inherited from vtkAbstractVolumeMapper
static vtkTypeBool IsTypeOf (const char *type)
 
static vtkAbstractVolumeMapperSafeDownCast (vtkObjectBase *o)
 
- Static Public Member Functions inherited from vtkAbstractMapper3D
static vtkTypeBool IsTypeOf (const char *type)
 
static vtkAbstractMapper3DSafeDownCast (vtkObjectBase *o)
 
- Static Public Member Functions inherited from vtkAbstractMapper
static vtkTypeBool IsTypeOf (const char *type)
 
static vtkAbstractMapperSafeDownCast (vtkObjectBase *o)
 
static vtkDataArrayGetScalars (vtkDataSet *input, int scalarMode, int arrayAccessMode, int arrayId, const char *arrayName, int &cellFlag)
 Internal helper function for getting the active scalars. More...
 
static vtkAbstractArrayGetAbstractScalars (vtkDataSet *input, int scalarMode, int arrayAccessMode, int arrayId, const char *arrayName, int &cellFlag)
 Internal helper function for getting the active scalars as an abstract array. More...
 
static vtkUnsignedCharArrayGetGhostArray (vtkDataSet *input, int scalarMode, unsigned char &ghostsToSkip)
 Returns the ghost array associated with the corresponding scalar mode, if present. More...
 
- Static Public Member Functions inherited from vtkAlgorithm
static vtkAlgorithmNew ()
 
static vtkTypeBool IsTypeOf (const char *type)
 
static vtkAlgorithmSafeDownCast (vtkObjectBase *o)
 
static vtkInformationIntegerKeyINPUT_IS_OPTIONAL ()
 Keys used to specify input port requirements. More...
 
static vtkInformationIntegerKeyINPUT_IS_REPEATABLE ()
 
static vtkInformationInformationVectorKeyINPUT_REQUIRED_FIELDS ()
 
static vtkInformationStringVectorKeyINPUT_REQUIRED_DATA_TYPE ()
 
static vtkInformationInformationVectorKeyINPUT_ARRAYS_TO_PROCESS ()
 
static vtkInformationIntegerKeyINPUT_PORT ()
 
static vtkInformationIntegerKeyINPUT_CONNECTION ()
 
static vtkInformationIntegerKeyCAN_PRODUCE_SUB_EXTENT ()
 This key tells the executive that a particular output port is capable of producing an arbitrary subextent of the whole extent. More...
 
static vtkInformationIntegerKeyCAN_HANDLE_PIECE_REQUEST ()
 Key that tells the pipeline that a particular algorithm can or cannot handle piece request. More...
 
static vtkInformationIntegerKeyABORTED ()
 
static void SetDefaultExecutivePrototype (vtkExecutive *proto)
 If the DefaultExecutivePrototype is set, a copy of it is created in CreateDefaultExecutive() using NewInstance(). More...
 
- Static Public Member Functions inherited from vtkObject
static vtkObjectNew ()
 Create an object with Debug turned off, modified time initialized to zero, and reference counting on. More...
 
static void BreakOnError ()
 This method is called when vtkErrorMacro executes. More...
 
static void SetGlobalWarningDisplay (vtkTypeBool val)
 This is a global flag that controls whether any debug, warning or error messages are displayed. More...
 
static void GlobalWarningDisplayOn ()
 This is a global flag that controls whether any debug, warning or error messages are displayed. More...
 
static void GlobalWarningDisplayOff ()
 This is a global flag that controls whether any debug, warning or error messages are displayed. More...
 
static vtkTypeBool GetGlobalWarningDisplay ()
 This is a global flag that controls whether any debug, warning or error messages are displayed. More...
 
- Static Public Member Functions inherited from vtkObjectBase
static vtkTypeBool IsTypeOf (const char *name)
 Return 1 if this class type is the same type of (or a subclass of) the named class. More...
 
static vtkIdType GetNumberOfGenerationsFromBaseType (const char *name)
 Given a the name of a base class of this class type, return the distance of inheritance between this class type and the named class (how many generations of inheritance are there between this class and the named class). More...
 
static vtkObjectBaseNew ()
 Create an object with Debug turned off, modified time initialized to zero, and reference counting on. More...
 
static void SetMemkindDirectory (const char *directoryname)
 The name of a directory, ideally mounted -o dax, to memory map an extended memory space within. More...
 
static bool GetUsingMemkind ()
 A global state flag that controls whether vtkObjects are constructed in the usual way (the default) or within the extended memory space. More...
 

Protected Member Functions

virtual vtkObjectBaseNewInstanceInternal () const
 
 vtkVolumeMapper ()
 
 ~vtkVolumeMapper () override
 
double SpacingAdjustedSampleDistance (double inputSpacing[3], int inputExtent[6])
 Compute a sample distance from the data spacing. More...
 
int FillInputPortInformation (int, vtkInformation *) override
 Fill the input port information objects for this algorithm. More...
 
- Protected Member Functions inherited from vtkAbstractVolumeMapper
 vtkAbstractVolumeMapper ()
 
 ~vtkAbstractVolumeMapper () override
 
- Protected Member Functions inherited from vtkAbstractMapper3D
 vtkAbstractMapper3D ()
 
 ~vtkAbstractMapper3D () override=default
 
- Protected Member Functions inherited from vtkAbstractMapper
 vtkAbstractMapper ()
 
 ~vtkAbstractMapper () override
 
- Protected Member Functions inherited from vtkAlgorithm
 vtkAlgorithm ()
 
 ~vtkAlgorithm () override
 
bool CheckUpstreamAbort ()
 Checks to see if an upstream filter has been aborted. More...
 
virtual int FillOutputPortInformation (int port, vtkInformation *info)
 Fill the output port information objects for this algorithm. More...
 
virtual void SetNumberOfInputPorts (int n)
 Set the number of input ports used by the algorithm. More...
 
virtual void SetNumberOfOutputPorts (int n)
 Set the number of output ports provided by the algorithm. More...
 
int InputPortIndexInRange (int index, const char *action)
 
int OutputPortIndexInRange (int index, const char *action)
 
int GetInputArrayAssociation (int idx, vtkInformationVector **inputVector)
 Get the association of the actual data array for the input array specified by idx, this is only reasonable during the REQUEST_DATA pass. More...
 
vtkInformationGetInputArrayFieldInformation (int idx, vtkInformationVector **inputVector)
 This method takes in an index (as specified in SetInputArrayToProcess) and a pipeline information vector. More...
 
virtual vtkExecutiveCreateDefaultExecutive ()
 Create a default executive. More...
 
void ReportReferences (vtkGarbageCollector *) override
 
virtual void SetNthInputConnection (int port, int index, vtkAlgorithmOutput *input)
 Replace the Nth connection on the given input port. More...
 
virtual void SetNumberOfInputConnections (int port, int n)
 Set the number of input connections on the given input port. More...
 
void SetInputDataInternal (int port, vtkDataObject *input)
 These methods are used by subclasses to implement methods to set data objects directly as input. More...
 
void AddInputDataInternal (int port, vtkDataObject *input)
 
int GetInputArrayAssociation (int idx, int connection, vtkInformationVector **inputVector)
 Filters that have multiple connections on one port can use this signature. More...
 
int GetInputArrayAssociation (int idx, vtkDataObject *input)
 Filters that have multiple connections on one port can use this signature. More...
 
vtkDataArrayGetInputArrayToProcess (int idx, vtkInformationVector **inputVector)
 Get the actual data array for the input array specified by idx, this is only reasonable during the REQUEST_DATA pass. More...
 
vtkDataArrayGetInputArrayToProcess (int idx, vtkInformationVector **inputVector, int &association)
 Get the actual data array for the input array specified by idx, this is only reasonable during the REQUEST_DATA pass. More...
 
vtkDataArrayGetInputArrayToProcess (int idx, int connection, vtkInformationVector **inputVector)
 Filters that have multiple connections on one port can use this signature. More...
 
vtkDataArrayGetInputArrayToProcess (int idx, int connection, vtkInformationVector **inputVector, int &association)
 Filters that have multiple connections on one port can use this signature. More...
 
vtkDataArrayGetInputArrayToProcess (int idx, vtkDataObject *input)
 Filters that have multiple connections on one port can use this signature. More...
 
vtkDataArrayGetInputArrayToProcess (int idx, vtkDataObject *input, int &association)
 Filters that have multiple connections on one port can use this signature. More...
 
vtkAbstractArrayGetInputAbstractArrayToProcess (int idx, vtkInformationVector **inputVector)
 Get the actual data array for the input array specified by idx, this is only reasonable during the REQUEST_DATA pass. More...
 
vtkAbstractArrayGetInputAbstractArrayToProcess (int idx, vtkInformationVector **inputVector, int &association)
 Get the actual data array for the input array specified by idx, this is only reasonable during the REQUEST_DATA pass. More...
 
vtkAbstractArrayGetInputAbstractArrayToProcess (int idx, int connection, vtkInformationVector **inputVector)
 Filters that have multiple connections on one port can use this signature. More...
 
vtkAbstractArrayGetInputAbstractArrayToProcess (int idx, int connection, vtkInformationVector **inputVector, int &association)
 Filters that have multiple connections on one port can use this signature. More...
 
vtkAbstractArrayGetInputAbstractArrayToProcess (int idx, vtkDataObject *input)
 Filters that have multiple connections on one port can use this signature. More...
 
vtkAbstractArrayGetInputAbstractArrayToProcess (int idx, vtkDataObject *input, int &association)
 Filters that have multiple connections on one port can use this signature. More...
 
virtual void SetErrorCode (unsigned long)
 The error code contains a possible error that occurred while reading or writing the file. More...
 
- Protected Member Functions inherited from vtkObject
 vtkObject ()
 
 ~vtkObject () override
 
void RegisterInternal (vtkObjectBase *, vtkTypeBool check) override
 
void UnRegisterInternal (vtkObjectBase *, vtkTypeBool check) override
 
void InternalGrabFocus (vtkCommand *mouseEvents, vtkCommand *keypressEvents=nullptr)
 These methods allow a command to exclusively grab all events. More...
 
void InternalReleaseFocus ()
 These methods allow a command to exclusively grab all events. More...
 
- Protected Member Functions inherited from vtkObjectBase
 vtkObjectBase ()
 
virtual ~vtkObjectBase ()
 
 vtkObjectBase (const vtkObjectBase &)
 
void operator= (const vtkObjectBase &)
 

Protected Attributes

int BlendMode
 
bool ComputeNormalFromOpacity = false
 Is the normal for volume shading computed from opacity or from scalars. More...
 
double AverageIPScalarRange [2]
 Threshold range for average intensity projection. More...
 
- Protected Attributes inherited from vtkAbstractVolumeMapper
int ScalarMode
 
char * ArrayName
 
int ArrayId
 
int ArrayAccessMode
 
- Protected Attributes inherited from vtkAbstractMapper3D
double Bounds [6]
 
double Center [3]
 
- Protected Attributes inherited from vtkAbstractMapper
vtkTimerLogTimer
 
double TimeToDraw
 
vtkWindowLastWindow
 
vtkPlaneCollectionClippingPlanes
 
- Protected Attributes inherited from vtkAlgorithm
vtkTimeStamp LastAbortCheckTime
 
vtkInformationInformation
 
double Progress
 
char * ProgressText
 
vtkProgressObserverProgressObserver
 
unsigned long ErrorCode
 The error code contains a possible error that occurred while reading or writing the file. More...
 
- Protected Attributes inherited from vtkObject
bool Debug
 
vtkTimeStamp MTime
 
vtkSubjectHelper * SubjectHelper
 
std::string ObjectName
 
- Protected Attributes inherited from vtkObjectBase
std::atomic< int32_t > ReferenceCount
 
vtkWeakPointerBase ** WeakPointers
 
vtkTypeBool Cropping
 Cropping variables, and a method for converting the world coordinate cropping region planes to voxel coordinates. More...
 
double CroppingRegionPlanes [6]
 Cropping variables, and a method for converting the world coordinate cropping region planes to voxel coordinates. More...
 
double VoxelCroppingRegionPlanes [6]
 Cropping variables, and a method for converting the world coordinate cropping region planes to voxel coordinates. More...
 
int CroppingRegionFlags
 Cropping variables, and a method for converting the world coordinate cropping region planes to voxel coordinates. More...
 
void ConvertCroppingRegionPlanesToVoxels ()
 Cropping variables, and a method for converting the world coordinate cropping region planes to voxel coordinates. More...
 

Additional Inherited Members

- Public Attributes inherited from vtkAlgorithm
std::atomic< vtkTypeBoolAbortExecute
 
- Static Protected Member Functions inherited from vtkAlgorithm
static vtkInformationIntegerKeyPORT_REQUIREMENTS_FILLED ()
 
- Static Protected Member Functions inherited from vtkObjectBase
static vtkMallocingFunction GetCurrentMallocFunction ()
 
static vtkReallocingFunction GetCurrentReallocFunction ()
 
static vtkFreeingFunction GetCurrentFreeFunction ()
 
static vtkFreeingFunction GetAlternateFreeFunction ()
 
- Static Protected Attributes inherited from vtkAlgorithm
static vtkTimeStamp LastAbortTime
 
static vtkExecutiveDefaultExecutivePrototype
 

Detailed Description

Abstract class for a volume mapper.

vtkVolumeMapper is the abstract definition of a volume mapper for regular rectilinear data (vtkImageData). Several basic types of volume mappers are supported.

Tests:
vtkVolumeMapper (Tests)

Definition at line 37 of file vtkVolumeMapper.h.

Member Typedef Documentation

◆ Superclass

Definition at line 40 of file vtkVolumeMapper.h.

Member Enumeration Documentation

◆ BlendModes

Blend modes.

The default mode is Composite where the scalar values are sampled through the volume and composited in a front-to-back scheme through alpha blending. The final color and opacity is determined using the color and opacity transfer functions.

Maximum and minimum intensity blend modes use the maximum and minimum scalar values, respectively, along the sampling ray. The final color and opacity is determined by passing the resultant value through the color and opacity transfer functions.

Additive blend mode accumulates scalar values by passing each value through the opacity transfer function and then adding up the product of the value and its opacity. In other words, the scalar values are scaled using the opacity transfer function and summed to derive the final color. Note that the resulting image is always grayscale i.e. aggregated values are not passed through the color transfer function. This is because the final value is a derived value and not a real data value along the sampling ray.

Average intensity blend mode works similar to the additive blend mode where the scalar values are multiplied by opacity calculated from the opacity transfer function and then added. The additional step here is to divide the sum by the number of samples taken through the volume. One can control the scalar range by setting the AverageIPScalarRange ivar to disregard scalar values, not in the range of interest, from the average computation. As is the case with the additive intensity projection, the final image will always be grayscale i.e. the aggregated values are not passed through the color transfer function. This is because the resultant value is a derived value and not a real data value along the sampling ray.

IsoSurface blend mode uses contour values defined by the user in order to display scalar values only when the ray crosses the contour. It supports opacity the same way composite blend mode does.

Note
vtkVolumeMapper::AVERAGE_INTENSITY_BLEND and ISOSURFACE_BLEND are only supported by the vtkGPUVolumeRayCastMapper with the OpenGL2 backend.
See also
SetAverageIPScalarRange()
GetIsoSurfaceValues()
Enumerator
COMPOSITE_BLEND 
MAXIMUM_INTENSITY_BLEND 
MINIMUM_INTENSITY_BLEND 
AVERAGE_INTENSITY_BLEND 
ADDITIVE_BLEND 
ISOSURFACE_BLEND 
SLICE_BLEND 

Definition at line 259 of file vtkVolumeMapper.h.

Constructor & Destructor Documentation

◆ vtkVolumeMapper()

vtkVolumeMapper::vtkVolumeMapper ( )
protected

◆ ~vtkVolumeMapper()

vtkVolumeMapper::~vtkVolumeMapper ( )
overrideprotected

Member Function Documentation

◆ IsTypeOf()

static vtkTypeBool vtkVolumeMapper::IsTypeOf ( const char *  type)
static

◆ IsA()

virtual vtkTypeBool vtkVolumeMapper::IsA ( const char *  name)
virtual

Return 1 if this class is the same type of (or a subclass of) the named class.

Returns 0 otherwise. This method works in combination with vtkTypeMacro found in vtkSetGet.h.

Reimplemented from vtkAbstractVolumeMapper.

Reimplemented in vtkSmartVolumeMapper, vtkOpenGLGPUVolumeRayCastMapper, vtkMultiBlockVolumeMapper, vtkAMRVolumeMapper, vtkOSPRayVolumeInterface, vtkGPUVolumeRayCastMapper, vtkFixedPointVolumeRayCastMapper, vtkAnariVolumeInterface, vtkOSPRayVolumeMapper, and vtkAnariVolumeMapper.

◆ SafeDownCast()

static vtkVolumeMapper* vtkVolumeMapper::SafeDownCast ( vtkObjectBase o)
static

◆ NewInstanceInternal()

virtual vtkObjectBase* vtkVolumeMapper::NewInstanceInternal ( ) const
protectedvirtual

◆ NewInstance()

vtkVolumeMapper* vtkVolumeMapper::NewInstance ( ) const

◆ PrintSelf()

void vtkVolumeMapper::PrintSelf ( ostream &  os,
vtkIndent  indent 
)
overridevirtual

Methods invoked by print to print information about the object including superclasses.

Typically not called by the user (use Print() instead) but used in the hierarchical print process to combine the output of several classes.

Reimplemented from vtkAbstractVolumeMapper.

Reimplemented in vtkSmartVolumeMapper, vtkOpenGLGPUVolumeRayCastMapper, vtkMultiBlockVolumeMapper, and vtkAMRVolumeMapper.

◆ SetInputData() [1/3]

virtual void vtkVolumeMapper::SetInputData ( vtkImageData )
virtual

Set/Get the input data.

Reimplemented in vtkAMRVolumeMapper.

◆ SetInputData() [2/3]

virtual void vtkVolumeMapper::SetInputData ( vtkDataSet )
virtual

Set/Get the input data.

Reimplemented in vtkAMRVolumeMapper.

◆ SetInputData() [3/3]

virtual void vtkVolumeMapper::SetInputData ( vtkRectilinearGrid )
virtual

Set/Get the input data.

Reimplemented in vtkAMRVolumeMapper.

◆ GetInput() [1/2]

virtual vtkDataSet* vtkVolumeMapper::GetInput ( )
virtual

Set/Get the input data.

Reimplemented in vtkGPUVolumeRayCastMapper.

◆ GetInput() [2/2]

virtual vtkDataSet* vtkVolumeMapper::GetInput ( int  port)
virtual

Set/Get the input data.

Reimplemented in vtkGPUVolumeRayCastMapper.

◆ SetBlendMode()

virtual void vtkVolumeMapper::SetBlendMode ( int  )
virtual

Set/Get the blend mode.

The default mode is Composite where the scalar values are sampled through the volume and composited in a front-to-back scheme through alpha blending. The final color and opacity is determined using the color and opacity transfer functions.

Maximum and minimum intensity blend modes use the maximum and minimum scalar values, respectively, along the sampling ray. The final color and opacity is determined by passing the resultant value through the color and opacity transfer functions.

Additive blend mode accumulates scalar values by passing each value through the opacity transfer function and then adding up the product of the value and its opacity. In other words, the scalar values are scaled using the opacity transfer function and summed to derive the final color. Note that the resulting image is always grayscale i.e. aggregated values are not passed through the color transfer function. This is because the final value is a derived value and not a real data value along the sampling ray.

Average intensity blend mode works similar to the additive blend mode where the scalar values are multiplied by opacity calculated from the opacity transfer function and then added. The additional step here is to divide the sum by the number of samples taken through the volume. One can control the scalar range by setting the AverageIPScalarRange ivar to disregard scalar values, not in the range of interest, from the average computation. As is the case with the additive intensity projection, the final image will always be grayscale i.e. the aggregated values are not passed through the color transfer function. This is because the resultant value is a derived value and not a real data value along the sampling ray.

IsoSurface blend mode uses contour values defined by the user in order to display scalar values only when the ray crosses the contour. It supports opacity the same way composite blend mode does.

Note
vtkVolumeMapper::AVERAGE_INTENSITY_BLEND and ISOSURFACE_BLEND are only supported by the vtkGPUVolumeRayCastMapper with the OpenGL2 backend.
See also
SetAverageIPScalarRange()
GetIsosurfaceValues()

Reimplemented in vtkMultiBlockVolumeMapper, and vtkAMRVolumeMapper.

◆ SetBlendModeToComposite()

void vtkVolumeMapper::SetBlendModeToComposite ( )
inline

Set/Get the blend mode.

The default mode is Composite where the scalar values are sampled through the volume and composited in a front-to-back scheme through alpha blending. The final color and opacity is determined using the color and opacity transfer functions.

Maximum and minimum intensity blend modes use the maximum and minimum scalar values, respectively, along the sampling ray. The final color and opacity is determined by passing the resultant value through the color and opacity transfer functions.

Additive blend mode accumulates scalar values by passing each value through the opacity transfer function and then adding up the product of the value and its opacity. In other words, the scalar values are scaled using the opacity transfer function and summed to derive the final color. Note that the resulting image is always grayscale i.e. aggregated values are not passed through the color transfer function. This is because the final value is a derived value and not a real data value along the sampling ray.

Average intensity blend mode works similar to the additive blend mode where the scalar values are multiplied by opacity calculated from the opacity transfer function and then added. The additional step here is to divide the sum by the number of samples taken through the volume. One can control the scalar range by setting the AverageIPScalarRange ivar to disregard scalar values, not in the range of interest, from the average computation. As is the case with the additive intensity projection, the final image will always be grayscale i.e. the aggregated values are not passed through the color transfer function. This is because the resultant value is a derived value and not a real data value along the sampling ray.

IsoSurface blend mode uses contour values defined by the user in order to display scalar values only when the ray crosses the contour. It supports opacity the same way composite blend mode does.

Note
vtkVolumeMapper::AVERAGE_INTENSITY_BLEND and ISOSURFACE_BLEND are only supported by the vtkGPUVolumeRayCastMapper with the OpenGL2 backend.
See also
SetAverageIPScalarRange()
GetIsosurfaceValues()

Definition at line 98 of file vtkVolumeMapper.h.

◆ SetBlendModeToMaximumIntensity()

void vtkVolumeMapper::SetBlendModeToMaximumIntensity ( )
inline

Set/Get the blend mode.

The default mode is Composite where the scalar values are sampled through the volume and composited in a front-to-back scheme through alpha blending. The final color and opacity is determined using the color and opacity transfer functions.

Maximum and minimum intensity blend modes use the maximum and minimum scalar values, respectively, along the sampling ray. The final color and opacity is determined by passing the resultant value through the color and opacity transfer functions.

Additive blend mode accumulates scalar values by passing each value through the opacity transfer function and then adding up the product of the value and its opacity. In other words, the scalar values are scaled using the opacity transfer function and summed to derive the final color. Note that the resulting image is always grayscale i.e. aggregated values are not passed through the color transfer function. This is because the final value is a derived value and not a real data value along the sampling ray.

Average intensity blend mode works similar to the additive blend mode where the scalar values are multiplied by opacity calculated from the opacity transfer function and then added. The additional step here is to divide the sum by the number of samples taken through the volume. One can control the scalar range by setting the AverageIPScalarRange ivar to disregard scalar values, not in the range of interest, from the average computation. As is the case with the additive intensity projection, the final image will always be grayscale i.e. the aggregated values are not passed through the color transfer function. This is because the resultant value is a derived value and not a real data value along the sampling ray.

IsoSurface blend mode uses contour values defined by the user in order to display scalar values only when the ray crosses the contour. It supports opacity the same way composite blend mode does.

Note
vtkVolumeMapper::AVERAGE_INTENSITY_BLEND and ISOSURFACE_BLEND are only supported by the vtkGPUVolumeRayCastMapper with the OpenGL2 backend.
See also
SetAverageIPScalarRange()
GetIsosurfaceValues()

Definition at line 99 of file vtkVolumeMapper.h.

◆ SetBlendModeToMinimumIntensity()

void vtkVolumeMapper::SetBlendModeToMinimumIntensity ( )
inline

Set/Get the blend mode.

The default mode is Composite where the scalar values are sampled through the volume and composited in a front-to-back scheme through alpha blending. The final color and opacity is determined using the color and opacity transfer functions.

Maximum and minimum intensity blend modes use the maximum and minimum scalar values, respectively, along the sampling ray. The final color and opacity is determined by passing the resultant value through the color and opacity transfer functions.

Additive blend mode accumulates scalar values by passing each value through the opacity transfer function and then adding up the product of the value and its opacity. In other words, the scalar values are scaled using the opacity transfer function and summed to derive the final color. Note that the resulting image is always grayscale i.e. aggregated values are not passed through the color transfer function. This is because the final value is a derived value and not a real data value along the sampling ray.

Average intensity blend mode works similar to the additive blend mode where the scalar values are multiplied by opacity calculated from the opacity transfer function and then added. The additional step here is to divide the sum by the number of samples taken through the volume. One can control the scalar range by setting the AverageIPScalarRange ivar to disregard scalar values, not in the range of interest, from the average computation. As is the case with the additive intensity projection, the final image will always be grayscale i.e. the aggregated values are not passed through the color transfer function. This is because the resultant value is a derived value and not a real data value along the sampling ray.

IsoSurface blend mode uses contour values defined by the user in order to display scalar values only when the ray crosses the contour. It supports opacity the same way composite blend mode does.

Note
vtkVolumeMapper::AVERAGE_INTENSITY_BLEND and ISOSURFACE_BLEND are only supported by the vtkGPUVolumeRayCastMapper with the OpenGL2 backend.
See also
SetAverageIPScalarRange()
GetIsosurfaceValues()

Definition at line 103 of file vtkVolumeMapper.h.

◆ SetBlendModeToAverageIntensity()

void vtkVolumeMapper::SetBlendModeToAverageIntensity ( )
inline

Set/Get the blend mode.

The default mode is Composite where the scalar values are sampled through the volume and composited in a front-to-back scheme through alpha blending. The final color and opacity is determined using the color and opacity transfer functions.

Maximum and minimum intensity blend modes use the maximum and minimum scalar values, respectively, along the sampling ray. The final color and opacity is determined by passing the resultant value through the color and opacity transfer functions.

Additive blend mode accumulates scalar values by passing each value through the opacity transfer function and then adding up the product of the value and its opacity. In other words, the scalar values are scaled using the opacity transfer function and summed to derive the final color. Note that the resulting image is always grayscale i.e. aggregated values are not passed through the color transfer function. This is because the final value is a derived value and not a real data value along the sampling ray.

Average intensity blend mode works similar to the additive blend mode where the scalar values are multiplied by opacity calculated from the opacity transfer function and then added. The additional step here is to divide the sum by the number of samples taken through the volume. One can control the scalar range by setting the AverageIPScalarRange ivar to disregard scalar values, not in the range of interest, from the average computation. As is the case with the additive intensity projection, the final image will always be grayscale i.e. the aggregated values are not passed through the color transfer function. This is because the resultant value is a derived value and not a real data value along the sampling ray.

IsoSurface blend mode uses contour values defined by the user in order to display scalar values only when the ray crosses the contour. It supports opacity the same way composite blend mode does.

Note
vtkVolumeMapper::AVERAGE_INTENSITY_BLEND and ISOSURFACE_BLEND are only supported by the vtkGPUVolumeRayCastMapper with the OpenGL2 backend.
See also
SetAverageIPScalarRange()
GetIsosurfaceValues()

Definition at line 107 of file vtkVolumeMapper.h.

◆ SetBlendModeToAdditive()

void vtkVolumeMapper::SetBlendModeToAdditive ( )
inline

Set/Get the blend mode.

The default mode is Composite where the scalar values are sampled through the volume and composited in a front-to-back scheme through alpha blending. The final color and opacity is determined using the color and opacity transfer functions.

Maximum and minimum intensity blend modes use the maximum and minimum scalar values, respectively, along the sampling ray. The final color and opacity is determined by passing the resultant value through the color and opacity transfer functions.

Additive blend mode accumulates scalar values by passing each value through the opacity transfer function and then adding up the product of the value and its opacity. In other words, the scalar values are scaled using the opacity transfer function and summed to derive the final color. Note that the resulting image is always grayscale i.e. aggregated values are not passed through the color transfer function. This is because the final value is a derived value and not a real data value along the sampling ray.

Average intensity blend mode works similar to the additive blend mode where the scalar values are multiplied by opacity calculated from the opacity transfer function and then added. The additional step here is to divide the sum by the number of samples taken through the volume. One can control the scalar range by setting the AverageIPScalarRange ivar to disregard scalar values, not in the range of interest, from the average computation. As is the case with the additive intensity projection, the final image will always be grayscale i.e. the aggregated values are not passed through the color transfer function. This is because the resultant value is a derived value and not a real data value along the sampling ray.

IsoSurface blend mode uses contour values defined by the user in order to display scalar values only when the ray crosses the contour. It supports opacity the same way composite blend mode does.

Note
vtkVolumeMapper::AVERAGE_INTENSITY_BLEND and ISOSURFACE_BLEND are only supported by the vtkGPUVolumeRayCastMapper with the OpenGL2 backend.
See also
SetAverageIPScalarRange()
GetIsosurfaceValues()

Definition at line 111 of file vtkVolumeMapper.h.

◆ SetBlendModeToIsoSurface()

void vtkVolumeMapper::SetBlendModeToIsoSurface ( )
inline

Set/Get the blend mode.

The default mode is Composite where the scalar values are sampled through the volume and composited in a front-to-back scheme through alpha blending. The final color and opacity is determined using the color and opacity transfer functions.

Maximum and minimum intensity blend modes use the maximum and minimum scalar values, respectively, along the sampling ray. The final color and opacity is determined by passing the resultant value through the color and opacity transfer functions.

Additive blend mode accumulates scalar values by passing each value through the opacity transfer function and then adding up the product of the value and its opacity. In other words, the scalar values are scaled using the opacity transfer function and summed to derive the final color. Note that the resulting image is always grayscale i.e. aggregated values are not passed through the color transfer function. This is because the final value is a derived value and not a real data value along the sampling ray.

Average intensity blend mode works similar to the additive blend mode where the scalar values are multiplied by opacity calculated from the opacity transfer function and then added. The additional step here is to divide the sum by the number of samples taken through the volume. One can control the scalar range by setting the AverageIPScalarRange ivar to disregard scalar values, not in the range of interest, from the average computation. As is the case with the additive intensity projection, the final image will always be grayscale i.e. the aggregated values are not passed through the color transfer function. This is because the resultant value is a derived value and not a real data value along the sampling ray.

IsoSurface blend mode uses contour values defined by the user in order to display scalar values only when the ray crosses the contour. It supports opacity the same way composite blend mode does.

Note
vtkVolumeMapper::AVERAGE_INTENSITY_BLEND and ISOSURFACE_BLEND are only supported by the vtkGPUVolumeRayCastMapper with the OpenGL2 backend.
See also
SetAverageIPScalarRange()
GetIsosurfaceValues()

Definition at line 112 of file vtkVolumeMapper.h.

◆ SetBlendModeToSlice()

void vtkVolumeMapper::SetBlendModeToSlice ( )
inline

Set/Get the blend mode.

The default mode is Composite where the scalar values are sampled through the volume and composited in a front-to-back scheme through alpha blending. The final color and opacity is determined using the color and opacity transfer functions.

Maximum and minimum intensity blend modes use the maximum and minimum scalar values, respectively, along the sampling ray. The final color and opacity is determined by passing the resultant value through the color and opacity transfer functions.

Additive blend mode accumulates scalar values by passing each value through the opacity transfer function and then adding up the product of the value and its opacity. In other words, the scalar values are scaled using the opacity transfer function and summed to derive the final color. Note that the resulting image is always grayscale i.e. aggregated values are not passed through the color transfer function. This is because the final value is a derived value and not a real data value along the sampling ray.

Average intensity blend mode works similar to the additive blend mode where the scalar values are multiplied by opacity calculated from the opacity transfer function and then added. The additional step here is to divide the sum by the number of samples taken through the volume. One can control the scalar range by setting the AverageIPScalarRange ivar to disregard scalar values, not in the range of interest, from the average computation. As is the case with the additive intensity projection, the final image will always be grayscale i.e. the aggregated values are not passed through the color transfer function. This is because the resultant value is a derived value and not a real data value along the sampling ray.

IsoSurface blend mode uses contour values defined by the user in order to display scalar values only when the ray crosses the contour. It supports opacity the same way composite blend mode does.

Note
vtkVolumeMapper::AVERAGE_INTENSITY_BLEND and ISOSURFACE_BLEND are only supported by the vtkGPUVolumeRayCastMapper with the OpenGL2 backend.
See also
SetAverageIPScalarRange()
GetIsosurfaceValues()

Definition at line 113 of file vtkVolumeMapper.h.

◆ GetBlendMode()

virtual int vtkVolumeMapper::GetBlendMode ( )
virtual

Set/Get the blend mode.

The default mode is Composite where the scalar values are sampled through the volume and composited in a front-to-back scheme through alpha blending. The final color and opacity is determined using the color and opacity transfer functions.

Maximum and minimum intensity blend modes use the maximum and minimum scalar values, respectively, along the sampling ray. The final color and opacity is determined by passing the resultant value through the color and opacity transfer functions.

Additive blend mode accumulates scalar values by passing each value through the opacity transfer function and then adding up the product of the value and its opacity. In other words, the scalar values are scaled using the opacity transfer function and summed to derive the final color. Note that the resulting image is always grayscale i.e. aggregated values are not passed through the color transfer function. This is because the final value is a derived value and not a real data value along the sampling ray.

Average intensity blend mode works similar to the additive blend mode where the scalar values are multiplied by opacity calculated from the opacity transfer function and then added. The additional step here is to divide the sum by the number of samples taken through the volume. One can control the scalar range by setting the AverageIPScalarRange ivar to disregard scalar values, not in the range of interest, from the average computation. As is the case with the additive intensity projection, the final image will always be grayscale i.e. the aggregated values are not passed through the color transfer function. This is because the resultant value is a derived value and not a real data value along the sampling ray.

IsoSurface blend mode uses contour values defined by the user in order to display scalar values only when the ray crosses the contour. It supports opacity the same way composite blend mode does.

Note
vtkVolumeMapper::AVERAGE_INTENSITY_BLEND and ISOSURFACE_BLEND are only supported by the vtkGPUVolumeRayCastMapper with the OpenGL2 backend.
See also
SetAverageIPScalarRange()
GetIsosurfaceValues()

Reimplemented in vtkAMRVolumeMapper.

◆ SetAverageIPScalarRange() [1/2]

virtual void vtkVolumeMapper::SetAverageIPScalarRange ( double  ,
double   
)
virtual

Set/Get the scalar range to be considered for average intensity projection blend mode.

Only scalar values between this range will be averaged during ray casting. This can be useful when volume rendering CT datasets where the areas occupied by air would deviate the final rendering. By default, the range is set to (VTK_FLOAT_MIN, VTK_FLOAT_MAX).

See also
SetBlendModeToAverageIntensity()

◆ SetAverageIPScalarRange() [2/2]

void vtkVolumeMapper::SetAverageIPScalarRange ( double  [2])

Set/Get the scalar range to be considered for average intensity projection blend mode.

Only scalar values between this range will be averaged during ray casting. This can be useful when volume rendering CT datasets where the areas occupied by air would deviate the final rendering. By default, the range is set to (VTK_FLOAT_MIN, VTK_FLOAT_MAX).

See also
SetBlendModeToAverageIntensity()

◆ GetAverageIPScalarRange() [1/2]

virtual double* vtkVolumeMapper::GetAverageIPScalarRange ( )
virtual

Set/Get the scalar range to be considered for average intensity projection blend mode.

Only scalar values between this range will be averaged during ray casting. This can be useful when volume rendering CT datasets where the areas occupied by air would deviate the final rendering. By default, the range is set to (VTK_FLOAT_MIN, VTK_FLOAT_MAX).

See also
SetBlendModeToAverageIntensity()

◆ GetAverageIPScalarRange() [2/2]

virtual void vtkVolumeMapper::GetAverageIPScalarRange ( double  data[2])
virtual

Set/Get the scalar range to be considered for average intensity projection blend mode.

Only scalar values between this range will be averaged during ray casting. This can be useful when volume rendering CT datasets where the areas occupied by air would deviate the final rendering. By default, the range is set to (VTK_FLOAT_MIN, VTK_FLOAT_MAX).

See also
SetBlendModeToAverageIntensity()

◆ SetCropping()

virtual void vtkVolumeMapper::SetCropping ( vtkTypeBool  )
virtual

Turn On/Off orthogonal cropping.

(Clipping planes are perpendicular to the coordinate axes.)

Reimplemented in vtkAMRVolumeMapper, and vtkMultiBlockVolumeMapper.

◆ GetCropping()

virtual vtkTypeBool vtkVolumeMapper::GetCropping ( )
virtual

Turn On/Off orthogonal cropping.

(Clipping planes are perpendicular to the coordinate axes.)

Reimplemented in vtkAMRVolumeMapper.

◆ CroppingOn()

virtual void vtkVolumeMapper::CroppingOn ( )
virtual

Turn On/Off orthogonal cropping.

(Clipping planes are perpendicular to the coordinate axes.)

◆ CroppingOff()

virtual void vtkVolumeMapper::CroppingOff ( )
virtual

Turn On/Off orthogonal cropping.

(Clipping planes are perpendicular to the coordinate axes.)

◆ SetCroppingRegionPlanes() [1/2]

virtual void vtkVolumeMapper::SetCroppingRegionPlanes ( double  ,
double  ,
double  ,
double  ,
double  ,
double   
)
virtual

Set/Get the Cropping Region Planes ( xmin, xmax, ymin, ymax, zmin, zmax ) These planes are defined in volume coordinates - spacing and origin are considered.

Reimplemented in vtkMultiBlockVolumeMapper, and vtkAMRVolumeMapper.

◆ SetCroppingRegionPlanes() [2/2]

virtual void vtkVolumeMapper::SetCroppingRegionPlanes ( double  [6])
virtual

Set/Get the Cropping Region Planes ( xmin, xmax, ymin, ymax, zmin, zmax ) These planes are defined in volume coordinates - spacing and origin are considered.

◆ GetCroppingRegionPlanes() [1/2]

virtual double* vtkVolumeMapper::GetCroppingRegionPlanes ( )
virtual

Set/Get the Cropping Region Planes ( xmin, xmax, ymin, ymax, zmin, zmax ) These planes are defined in volume coordinates - spacing and origin are considered.

Reimplemented in vtkAMRVolumeMapper.

◆ GetCroppingRegionPlanes() [2/2]

virtual void vtkVolumeMapper::GetCroppingRegionPlanes ( double  data[6])
virtual

Set/Get the Cropping Region Planes ( xmin, xmax, ymin, ymax, zmin, zmax ) These planes are defined in volume coordinates - spacing and origin are considered.

◆ GetVoxelCroppingRegionPlanes() [1/2]

virtual double* vtkVolumeMapper::GetVoxelCroppingRegionPlanes ( )
virtual

Get the cropping region planes in voxels.

Only valid during the rendering process

◆ GetVoxelCroppingRegionPlanes() [2/2]

virtual void vtkVolumeMapper::GetVoxelCroppingRegionPlanes ( double  data[6])
virtual

Get the cropping region planes in voxels.

Only valid during the rendering process

◆ SetComputeNormalFromOpacity()

virtual void vtkVolumeMapper::SetComputeNormalFromOpacity ( bool  )
virtual

If enabled, the volume(s) whose shading is enabled will use the gradient of opacity instead of the scalar gradient to estimate the surface's normal when applying the shading model.

The opacity considered for the gradient is then the scalars converted to opacity by the transfer function(s). For now it is only supported in vtkGPUVolumeRayCastMapper. In vtkSmartVolumeMapper and in vtkMultiBlockVolumeMapper, this parameter is used when the GPU mapper is effectively used. Note that enabling it might affect performances, especially when using a 2D TF or a gradient opacity. It is disabled by default.

Reimplemented in vtkMultiBlockVolumeMapper.

◆ GetComputeNormalFromOpacity()

virtual bool vtkVolumeMapper::GetComputeNormalFromOpacity ( )
virtual

If enabled, the volume(s) whose shading is enabled will use the gradient of opacity instead of the scalar gradient to estimate the surface's normal when applying the shading model.

The opacity considered for the gradient is then the scalars converted to opacity by the transfer function(s). For now it is only supported in vtkGPUVolumeRayCastMapper. In vtkSmartVolumeMapper and in vtkMultiBlockVolumeMapper, this parameter is used when the GPU mapper is effectively used. Note that enabling it might affect performances, especially when using a 2D TF or a gradient opacity. It is disabled by default.

◆ ComputeNormalFromOpacityOn()

virtual void vtkVolumeMapper::ComputeNormalFromOpacityOn ( )
virtual

If enabled, the volume(s) whose shading is enabled will use the gradient of opacity instead of the scalar gradient to estimate the surface's normal when applying the shading model.

The opacity considered for the gradient is then the scalars converted to opacity by the transfer function(s). For now it is only supported in vtkGPUVolumeRayCastMapper. In vtkSmartVolumeMapper and in vtkMultiBlockVolumeMapper, this parameter is used when the GPU mapper is effectively used. Note that enabling it might affect performances, especially when using a 2D TF or a gradient opacity. It is disabled by default.

◆ ComputeNormalFromOpacityOff()

virtual void vtkVolumeMapper::ComputeNormalFromOpacityOff ( )
virtual

If enabled, the volume(s) whose shading is enabled will use the gradient of opacity instead of the scalar gradient to estimate the surface's normal when applying the shading model.

The opacity considered for the gradient is then the scalars converted to opacity by the transfer function(s). For now it is only supported in vtkGPUVolumeRayCastMapper. In vtkSmartVolumeMapper and in vtkMultiBlockVolumeMapper, this parameter is used when the GPU mapper is effectively used. Note that enabling it might affect performances, especially when using a 2D TF or a gradient opacity. It is disabled by default.

◆ SetCroppingRegionFlags()

virtual void vtkVolumeMapper::SetCroppingRegionFlags ( int  )
virtual

Set the flags for the cropping regions.

The clipping planes divide the volume into 27 regions - there is one bit for each region. The regions start from the one containing voxel (0,0,0), moving along the x axis fastest, the y axis next, and the z axis slowest. These are represented from the lowest bit to bit number 27 in the integer containing the flags. There are several convenience functions to set some common configurations - subvolume (the default), fence (between any of the clip plane pairs), inverted fence, cross (between any two of the clip plane pairs) and inverted cross.

Reimplemented in vtkMultiBlockVolumeMapper, and vtkAMRVolumeMapper.

◆ GetCroppingRegionFlags()

virtual int vtkVolumeMapper::GetCroppingRegionFlags ( )
virtual

Set the flags for the cropping regions.

The clipping planes divide the volume into 27 regions - there is one bit for each region. The regions start from the one containing voxel (0,0,0), moving along the x axis fastest, the y axis next, and the z axis slowest. These are represented from the lowest bit to bit number 27 in the integer containing the flags. There are several convenience functions to set some common configurations - subvolume (the default), fence (between any of the clip plane pairs), inverted fence, cross (between any two of the clip plane pairs) and inverted cross.

Reimplemented in vtkAMRVolumeMapper.

◆ SetCroppingRegionFlagsToSubVolume()

void vtkVolumeMapper::SetCroppingRegionFlagsToSubVolume ( )
inline

Set the flags for the cropping regions.

The clipping planes divide the volume into 27 regions - there is one bit for each region. The regions start from the one containing voxel (0,0,0), moving along the x axis fastest, the y axis next, and the z axis slowest. These are represented from the lowest bit to bit number 27 in the integer containing the flags. There are several convenience functions to set some common configurations - subvolume (the default), fence (between any of the clip plane pairs), inverted fence, cross (between any two of the clip plane pairs) and inverted cross.

Definition at line 189 of file vtkVolumeMapper.h.

◆ SetCroppingRegionFlagsToFence()

void vtkVolumeMapper::SetCroppingRegionFlagsToFence ( )
inline

Set the flags for the cropping regions.

The clipping planes divide the volume into 27 regions - there is one bit for each region. The regions start from the one containing voxel (0,0,0), moving along the x axis fastest, the y axis next, and the z axis slowest. These are represented from the lowest bit to bit number 27 in the integer containing the flags. There are several convenience functions to set some common configurations - subvolume (the default), fence (between any of the clip plane pairs), inverted fence, cross (between any two of the clip plane pairs) and inverted cross.

Definition at line 190 of file vtkVolumeMapper.h.

◆ SetCroppingRegionFlagsToInvertedFence()

void vtkVolumeMapper::SetCroppingRegionFlagsToInvertedFence ( )
inline

Set the flags for the cropping regions.

The clipping planes divide the volume into 27 regions - there is one bit for each region. The regions start from the one containing voxel (0,0,0), moving along the x axis fastest, the y axis next, and the z axis slowest. These are represented from the lowest bit to bit number 27 in the integer containing the flags. There are several convenience functions to set some common configurations - subvolume (the default), fence (between any of the clip plane pairs), inverted fence, cross (between any two of the clip plane pairs) and inverted cross.

Definition at line 191 of file vtkVolumeMapper.h.

◆ SetCroppingRegionFlagsToCross()

void vtkVolumeMapper::SetCroppingRegionFlagsToCross ( )
inline

Set the flags for the cropping regions.

The clipping planes divide the volume into 27 regions - there is one bit for each region. The regions start from the one containing voxel (0,0,0), moving along the x axis fastest, the y axis next, and the z axis slowest. These are represented from the lowest bit to bit number 27 in the integer containing the flags. There are several convenience functions to set some common configurations - subvolume (the default), fence (between any of the clip plane pairs), inverted fence, cross (between any two of the clip plane pairs) and inverted cross.

Definition at line 195 of file vtkVolumeMapper.h.

◆ SetCroppingRegionFlagsToInvertedCross()

void vtkVolumeMapper::SetCroppingRegionFlagsToInvertedCross ( )
inline

Set the flags for the cropping regions.

The clipping planes divide the volume into 27 regions - there is one bit for each region. The regions start from the one containing voxel (0,0,0), moving along the x axis fastest, the y axis next, and the z axis slowest. These are represented from the lowest bit to bit number 27 in the integer containing the flags. There are several convenience functions to set some common configurations - subvolume (the default), fence (between any of the clip plane pairs), inverted fence, cross (between any two of the clip plane pairs) and inverted cross.

Definition at line 196 of file vtkVolumeMapper.h.

◆ Render()

void vtkVolumeMapper::Render ( vtkRenderer ren,
vtkVolume vol 
)
overridepure virtual

WARNING: INTERNAL METHOD - NOT INTENDED FOR GENERAL USE DO NOT USE THIS METHOD OUTSIDE OF THE RENDERING PROCESS Render the volume.

Implements vtkAbstractVolumeMapper.

Implemented in vtkMultiBlockVolumeMapper, vtkAMRVolumeMapper, vtkSmartVolumeMapper, vtkOSPRayVolumeInterface, vtkGPUVolumeRayCastMapper, vtkFixedPointVolumeRayCastMapper, vtkAnariVolumeInterface, vtkOSPRayVolumeMapper, and vtkAnariVolumeMapper.

◆ ReleaseGraphicsResources()

void vtkVolumeMapper::ReleaseGraphicsResources ( vtkWindow )
inlineoverridevirtual

WARNING: INTERNAL METHOD - NOT INTENDED FOR GENERAL USE Release any graphics resources that are being consumed by this mapper.

The parameter window could be used to determine which graphic resources to release.

Reimplemented from vtkAbstractVolumeMapper.

Reimplemented in vtkOpenGLGPUVolumeRayCastMapper, vtkMultiBlockVolumeMapper, vtkSmartVolumeMapper, and vtkAMRVolumeMapper.

Definition at line 215 of file vtkVolumeMapper.h.

◆ SpacingAdjustedSampleDistance()

double vtkVolumeMapper::SpacingAdjustedSampleDistance ( double  inputSpacing[3],
int  inputExtent[6] 
)
protected

Compute a sample distance from the data spacing.

When the number of voxels is 8, the sample distance will be roughly 1/200 the average voxel size. The distance will grow proportionally to numVoxels^(1/3).

◆ ConvertCroppingRegionPlanesToVoxels()

void vtkVolumeMapper::ConvertCroppingRegionPlanesToVoxels ( )
protected

Cropping variables, and a method for converting the world coordinate cropping region planes to voxel coordinates.

◆ FillInputPortInformation()

int vtkVolumeMapper::FillInputPortInformation ( int  port,
vtkInformation info 
)
overrideprotectedvirtual

Fill the input port information objects for this algorithm.

This is invoked by the first call to GetInputPortInformation for each port so subclasses can specify what they can handle.

Reimplemented from vtkAbstractVolumeMapper.

Reimplemented in vtkMultiBlockVolumeMapper, and vtkAMRVolumeMapper.

Member Data Documentation

◆ BlendMode

int vtkVolumeMapper::BlendMode
protected

Definition at line 281 of file vtkVolumeMapper.h.

◆ ComputeNormalFromOpacity

bool vtkVolumeMapper::ComputeNormalFromOpacity = false
protected

Is the normal for volume shading computed from opacity or from scalars.

Definition at line 286 of file vtkVolumeMapper.h.

◆ AverageIPScalarRange

double vtkVolumeMapper::AverageIPScalarRange[2]
protected

Threshold range for average intensity projection.

Definition at line 291 of file vtkVolumeMapper.h.

◆ Cropping

vtkTypeBool vtkVolumeMapper::Cropping
protected

Cropping variables, and a method for converting the world coordinate cropping region planes to voxel coordinates.

Definition at line 298 of file vtkVolumeMapper.h.

◆ CroppingRegionPlanes

double vtkVolumeMapper::CroppingRegionPlanes[6]
protected

Cropping variables, and a method for converting the world coordinate cropping region planes to voxel coordinates.

Definition at line 299 of file vtkVolumeMapper.h.

◆ VoxelCroppingRegionPlanes

double vtkVolumeMapper::VoxelCroppingRegionPlanes[6]
protected

Cropping variables, and a method for converting the world coordinate cropping region planes to voxel coordinates.

Definition at line 300 of file vtkVolumeMapper.h.

◆ CroppingRegionFlags

int vtkVolumeMapper::CroppingRegionFlags
protected

Cropping variables, and a method for converting the world coordinate cropping region planes to voxel coordinates.

Definition at line 301 of file vtkVolumeMapper.h.


The documentation for this class was generated from the following file: